OVERVERY FOR ZIKA THE ANT SECRETARY FO OVERVERY FOR ZIKA THE SECRETARY FO VACCINES IN DEVELOPINE OF THE SECRETARY FO

Gerald R. Kovacs, PhD Biomedical Advanced Research and Development Authority (BARDA) Office of the Assistant Secretary for Preparedness and Response (ASPR) February 23, 2017

Meeting of the Advisory Committee on Immunization Practices Atlanta, GA

Resilient People. Healthy Communities. A Nation Prepared.

Photo credit: CDC/James Gathany

Prevention of ZIKV Infection

There is currently no licensed ZIKV vaccine available, however...

- Vaccines for other flaviviruses have been developed and used for over 70 years
- Active development programs for Dengue and West Nile vaccines have been ongoing for over 30 years; however, knowledge of Zika virus was limited at the outset of the epidemic
- Past experience is being leveraged for ZIKV vaccine development
- Zika R&D efforts accelerated greatly by NIAID, WRAIR, and BARDA
- A coordinated, interagency portfolio management team was established to oversee and accelerate vaccine development

Product Development Pipeline

Early Concept and Product Development

Advanced Product Development Commercial Manufacturing and Licensure

Regulatory Review

Vaccine Landscape Feb 2016

ASSISTANT SECRETARY FOR PREPAREDNESS AND RESPONSE

US Zika Vaccine Goals

2016-2018

Aim #1: Evaluate available vaccine candidates to assess safety, efficacy, and immunogenicity and identify protective immune correlates during the time of highest disease incidence

By 2018

Aim #2: Deploy an available vaccine under an appropriate regulatory mechanism to US populations at high risk of exposure

By 2020

Aim #3: Work with industry partners to commercialize vaccine(s) for broad distribution

General Considerations on Vaccine Technologies

Technology	Pros	Cons	Licensed Human Flavivirus Vaccines	
Nucleic Acid (DNA, mRNA)	Simple process development/mfg. Potential for rapid response capability.	No DNA or mRNA vaccines licensed for human use. Limited experience at commercial scale.	Νο	
Whole Virus Inactivated	Commercial platforms exist. Inactivated vaccines approved for other indications.	May need several doses and adjuvant. Need large production requirement.	Japanese Encephalitis, Tick Borne Encephalitis	
Live Attenuated (including flavi- chimeras)	Commercial platforms exist.	Generally contraindicated in pregnant women and very young children.	Yellow fever, Dengue, Japanese Encephalitis	
Viral Vectors	Viral-vectored vaccines in advanced trials for other diseases. Commercial platforms exist.	Safety concerns in pregnant women, depending on replication competency.	Νο	
Recombinant/ Subunit	Low risk. Several commercial platforms exist.	Some difficulty depending on the platform, <i>e.g.</i> protein folding. Use of adjuvants may increase concerns.	No	

Alignment of USG Candidates

Nucleic Acid Vaccines

• • •

FOR IMMEDIATE RELEASE Wednesday, August 3, 2016

News Release

NIH Begins Testing Investigational Zika Vaccine in Humans

DNA vaccine developed by VRC

- Phase I trial to enroll 80 vols ages 18-35 yo
- Initial results expected by the end of 2016

AS Fauci/NIAID

ASSISTANT SECRETARY FOR PREPAREDNESS AND RESPONSE

Accelerated Planning: Phase 2/2b

Zika DNA Vaccine Candidate

A Phase 2b, Randomized, Placebo-Controlled Trial to Evaluate the Safety and Immunogenicity of a Zika Virus DNA Vaccine Healthy Volunteers Ages 15-35

30+ sites in the US, Caribbean, Central and South America

(To begin accrual following analysis of preliminary data from Part A)

Group	Subjects	Total Dose	Divided over Number of Injections	Location of Vaccination: Number of Limbs	Day 0	Week 4	Week 8		
4	1200	TBD	TBD	TBD	DNA	DNA	DNA		
5	1200	TBD	TBD	TBD	Placebo	Placebo	Placebo		
Total	2400*	Injections are administered IM by needleless injection device.							

*Accrual up to a total of 5000 subjects (randomized 1:1 into Groups 4 and 5) is permitted if additional subjects are necessary for safety and efficacy evaluations.

AS Fauci/NIAID

mRNA Vaccine Moderna Therapeutics

- Synthetic mRNAs used to deliver virtually any gene
- "Plug and play" technology
- Novel chemistry enables mRNA to elude intracellular innate immune responses
- Once in cell, acts like a native mRNA to express foreign gene
- Robust, protective immunological responses in animal models
- Simple needle and syringe delivery
- Phase I initiated in December 2016 currently enrolling

Purified Inactivated Vaccines

• • •

Zika Purified Inactivated Vaccines (ZPIV)

- Two candidates in advanced development: <u>Sanofi Pasteur and</u> <u>Takeda</u>
- Formalin-inactivated Zika virus, alum-adjuvanted
- "Proof-of-concept" lot manufactured by <u>WRAIR</u> based on technology used for JEV vaccine
- Vaccine is fully protective in mice and NHP models
- <u>NIAID and WRAIR</u> conducting Phase I clinical trials to evaluate safety, immunogenicity, regimen, dose-sparing, prior flavi immunity
- WRAIR <u>transferring technology</u> to Sanofi Pasteur accelerating development
- BARDA awarded <u>large development contracts</u> to Sanofi and Takeda to manufacture and license ZPIV vaccines

Live Attenuated/Chimeric Vaccine

• • •

Live Attenuated DV/ZIKV Vaccine

(NIAID Laboratory of Infectious Diseases)

- Addition of this ZIKV component provides an immunological advantage for DENV
- ZIKV component may also be suitable as stand-alone vaccine

Vaccine Landscape Jan. 2017

USG Zika Vaccines Trials

Key Challenges/Questions

- Regulatory/Clinical
 - Will future disease incidence support evaluation of vaccine efficacy?
 - Which regulatory path will be most feasible?
 - Will human challenge and/or accelerated approval (correlate of protection) facilitate/accelerate evaluation?
 - Will an animal model(s) provide us with sufficient data to support efficacy determinations in humans?
 - Will pre-immunity to other flaviviruses affect Zika vaccine take, and/or vice versa?
- Manufacturing
 - Will manufacturers be able to develop a vaccine fast enough to impact the epidemic?
 - Will previous flavivirus vaccine platforms work well enough to prevent congenital infections?
 - Will the market sustain more than one vaccine?

FOR MORE INFORMATION CONTACT BARDA

Biomedical Advanced Research and Development Authority, 200 Independence Ave., SW, Washington, DC 20201 <u>www.phe.gov/barda</u> <u>www.medicalcountermeasures.gov</u>